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ABSTRACT

Accurate estimation of arrival times along an ocean acoustic ray path is an

important component of ocean acoustic tomography. A straightforward method of

arrival time estimation, based on locating the maximum value of an interpolated

arrival, was used with limited success for analysis of data from the December 1988

Monterey Bay Tomography Experiment. Close examination of the data revealed

multiple closely spaced arrivals of similar amplitude, only partially resolved in many

returns. A modification to the original tracking algorithm succeeded in improving

the estimates and lead to the development of a tracker based on a least mean squares

(LMS) linear predictive filter. A second algorithm, based on a modified recursive

least squares (MRLS) solution, allows the estimation of dynamic spectral processes

at surface and internal wave frequencies in the tomography arrivals.
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I. INTRODUCTION

This thesis work is a continuation of research resulting from the 1988 Mon-

terey Bay Tomography Experiment (MBTE). The experiment and preliminary data

analysis are described in detail in [Ref. 1]. An in depth treatment of the basic sig-

nal processing algorithms is provided in [Ref. 2]. Early acoustic modeling and an

environmental assessment is presented in [Ref. 3] with more in depth 3-D acoustic

modeling discussed in [Ref. 4]. Goals of the 1988 Monterey Bay tomography experi-

ment included quantifying the effects of surface and internal waves on acoustic signals

designed with a short duration maximal- length sequence, transmitted continuously

from an ocean acoustic source. This introduction summarizes the pertinent results

and recommendations of the original research [Ref. 1] that are applicable to the work

to follow.

A. THESIS SUMMARY

In the 60 km MBTE, travel time fluctuations were found to be five to ten times

greater than seen in previous 300 km experiments [Ref. 1]. Although ray paths in

the MBTE underwent multiple surface interactions while the longer experiments did

not, the fluctuations exceeded the predicted levels for the number of expected surface

interactions. The magnitude of the arrival time spectra at surface wave frequencies

did not agree with predictions, but the frequency and spectral shape matched closely

those computed from wave buoy data also collected during the experiment. The

preliminary analysis estimated the surface wave spectral characteristics to a degree,

but useful results at internal wave frequencies could not be obtained. More work was

necessary to characterize the frequency and amplitude dynamics of the surface and

1



internal wave processes. Both effects need to be fully understood before an inverse

mesoscale mapping of th circulation in the Monterey Bay canyon can be attempted.

The object of this work is to develop signal processing algorithms which will

enable reasonably accurate estimation of the spectral content of the data in both

the surface and internal wave frequency domains. It is desirable to produce dynamic

spectral plots (i.e. variation in frequency and magnitude over time) of the ocean

processes at work in the Monterey Bay canyon. There is considerable signal processing

involved in the analysis of data from the MBTE. The initial processing, including

maximal-length sequence removal or matched filtering using a Hadamard transfcrm,

is described in [Ref. 1] and in [Ref. 2]. Algorithms developed in the present thesis

work are applied after the matched filtering. These algorithms are of a general nature

and can be adopted to process any time series.

Substantial arrival tracking was completed prior to this work, but it is of limited

usefulness because of contamination from the undetected presence of partially resolved

arrivals (i.e. ray paths that have insufficient temporal spacing). It will be shown that

the interference of the closely spaced arrivals is responsible for the anomalous surface

wave magnitudes. The first step in spectral analysis of this data set, was to improve

the arrival tracking algorithm so that interference effects from the closely spaced

arrivals were minimized. Normally, multipath interference would render data such

as these useless. Reasonable results were obtained by utilizing the assumption that

the received ray paths were stable with respect to each other. The application of

an adaptive least mean squares (LMS) predictive filter in a mode independent of the

amplitude fluctuations of the received signal, yielded a considerable improvement in

the quality of the arrival time tracks.

Data collection was restricted to six hour segments as dictated by the capacity of

the recording media. This restriction on the availability of large contiguous data seg-

2



ments coupled with the lack of knowledge of internal wave processes in the Monterey

Bay canyon, prompted the development of an adaptive high resolution spectral esti-

mation technique tOat could handle nonstationary (i.e. shifting poles) data streams.

Internal waves, if present, were believed to move through the region as packets or

solitons rather than having a well defined stationary character like the surface wave

components.

This thesis focuses on two primary areas to process data from the MBTE, arrival

tracking with a display for track validation and dynamic spectral estimation on the

tracks in the surface wave and internal wave frequency domains. The two algorithms

developed, are discussed along with preliminary results of their application to MBTE

data set.

B. THESIS ORGANIZATION

This report has been organized in the following way:

1. Chapter II describes the important aspects of the MBTE with an overview
of the signal processing. The multipath arrival structure is investigated and
shortcomings of the original peak tracking algorithm are revealed.

2. Chapter III describes the implementation of the LMS peak tracking algorithm
along with the greyscale track verification plots.

3. Chapter IV discusses the development of the nonstationary spectral estimation
procedure along with some performance results.

4. Chapter V presents results, with limited physical interpretation, of the applica-
tion of the methods developed to the MBTE data set. Also, some recommen-
dations for future work and aids for data interpretation are discussed.

5. Chapter VI concludes the discussions.

3



II. THE MONTEREY BAY TOMOGRAPHY
EXPERIMENT

A. DESCRIPTION

The MBTE was unique in that is was conducted in a coastal region with ex-

tremely complex bathymetry. Ray paths from transmitter to receiver, transition

steeply from deep canyon water to shallow continental shelf water causing multiple

bottom/surface ray interactions in the shelf region. Figure 2.1 shows an example set

of eigenrays, from transmitter to receiver, generated by a 3-D ray tracing model [Ref.

4]. This set of rays has been generated for Station J, the primary analysis station

selected because of favorable received signal characteristics.

Figure 2.2 depicts the overall geometry of the MBTE. The transmitter was

placed on an unnamed seamount at LAT 36056.3'N and LONG 122017.84'W. Nine

receivers were placed at various locations as determined by the 2-D modeling of [Ref.

3]. The locations were spread along the continental shelf, in approximately 100 meters

of water, around the periphery of the Monterey Bay canyon as shown in Fig 2.2.

The four goals of the MBTE were:

1. Investigate experimentally the relation between the frequency-direction spec-
trum of surface waves and the spectra of travel time changes in tomography
signals.

2. Investigate the effect of internal waves on tomography signals in a coastal envi-
ronment.

3. Investigate the effect of complex three dimensional bathymetry on long range
acoustic propagation.

4. Test a real-time shore-based tomography data acquisition system. [Ref. 1]

Items 1 and 2 are addressed directly in the work to follow.

4



RANGE AT SEA LEVEL (ikm)

0 5 10 15 20 25 30 35 40 45 50

.2

4

.6

Ie

1 -.2

E

*1 .6

L4J

2.0

2.2

2.4

2.6

2.8

3.0 I I I I II *.I I .I , ! ,. .

Figure 2.1: Sample 3-D eigenray solution with complicated bathymetry

along each path to station J, 14 Dec 1988, after Smith.
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Tomography requires a resolvable signal (temporal or spacial resolution) along

an identifiable (adequately modeled) and stable eigenray path, with sufficient signal-

to-noise ratio (SNR) at the receiver to process the arrival time perturbations over a

long period [Ref. 5]. Signal design and receiver locations were chosen to optimize

these requirements according to the 2-D modeling of [Ref. 3].

A high-Q onmi-directional transmitter was excited to continuously transmit a

31 bit, 1.9375 sec, maximal-length pulse compression sequence. The bits were created

by phase modulating a 224 Hz carrier frequency at a 16 Hz bit rate according to the

equation,

s(t) = cos(2'rfct + AIO) (2.1)

where f, is the acoustic carrier frequency, t is time, M, is the maximal-length sequence

bit value [-1,1] for the ith bit and 0 is the phase angle. Signal-to-noise ratio of the de-

modulated and compressed received signal is maximized by setting 0 = tan-l(vN),

where N is the number of bits in the maximal-length sequence. The 31 bit, 1.9375

second, sequence length yields a Nyquist frequency of 0.258 Hz for sampling dynamic

ocean processes. Upon demodulation and sequence removal, the resulting pulse com-

pression sets the resolution capability for fully resolved arrivals to 62.5 msec, a single

bit pulse width. Figure 2.3 shows a block diagram of the major signal processing

steps utilized for the received data. The last two blocks of the diagram are addressed

in the chapters to follow. For an in depth discussion of other blocks, see [Ref. 1]

and [Ref. 2].

After Hadamard matched filter processing or maximal-length sequence removal,

arrivals have an ideal character as shown in Fig 2.4. Predicted travel times for station

J geometry were 35 to 40 seconds. Relative and not absolute travel times were mea-

sured, since the sequence repeated every 1.9375 seconds. Arrival time perturbations

were the desired measurement, thus absolute travel time was not important in the ap-
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1.9375 seconds-

time

Figure 2.5: Two resolvable unamnbiguous acoustic arrivals.

plication. '[lie lack of an absolute reference (toes, however, introduce the possibilitY of

anliguotis measurements. Unambiguous resolvable arrivals are presented in Fig 2.5.

Any detectable arrivals with travel time differences of more than 1.9375 seconds are

anibiguous since they fall into the next time interval, as demonstrated in Fig 2.6. A

final possibility exists for the arrival structure as demonstrated in Fig 2.7. Signals

mav not only be ambiguous, but may also be unresolvable or only partially resolvable

in many of the traces. This is an important point to note for later discussions.

Data, after Iladamard matched filter processing, can be displayed as in Fig 2.8.

This display is somewhat misleading as each individual trace in the plot is an average

of 16 separate traces. The averaging masks the fine structure. It is useful to show

the central arrival location but shows nothing of what processing schemes have to

(leaf with from sequence to sequence. An equivalent number of traces as displayed in

Fig 2.8, are displayed in Fig 2.9 without averaging. It is very difficult in this instanc,

to observe the dominant trends. The peak structure is considerably more colhpl'x

than indicated in Fig 2.8. An alternative to these data displays is a greyscale displav

borrowed from passive sonar processing and shown in Fig 2.10. Individual traces, as

9



go 1.9375 seconds--

Figure 2.6: Two resolvable acoustic arrivals with an ambiguity caused by
a time difference of one integral sequence length.

time

Figure 2.7: Two unresolvable acoustic arrivals.
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Figure 2.8: Waterfall display of received acoustic signals from station J,

14 Dec 88. Each trace is 31 seconds of data coherently averaged to one

1.9375 second maxin-al-length sequence period.
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Figure 2.9: Waterfall display of received acoustic signals from station .1, 14
Dec 88. Traces are consecutive 1.9375 second unaveraged maxim-al-length
sequence periods.
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TABLE 2.1: A TABLE OF PERIODICITIES OF INTEREST FOR THE
MBTE DATA.

Period Frequency Description
5-12 sec 0.2-0.0833 Hz Surface gravity waves from

fully developed seas

6-22 sec 0.1667-0.04545 Hz Sea swell periods
1-3 min 0.01667-0.0055 Hz Surf beat

8 min - 24 hrs 0.002083 - 1.157 x 10- 5 Htz Internal waves
and tides

in Fig 2.9, are quantized into nine levels and presented as intensity modulated pixels.

This form of presentation allows a large amount of data to be displayed on a page

and leaves integration to the eye. The arrival perturbation dynamics are visible and

corrclograms, as they will be labeled, are used later in the report with overlayed peak

tracking information to evaluate tracker performance and track validity. The term

correlogram was chosen since, in this case, the greyscale represents the output of a

matched filter or equivalently, a correlator.

Several ocean periodicities of interest have been identified in [Ref. 1]. It is

possible for any combination of these periods to be present in the tomography data.

Thus, they are listed and briefly described in Table 2.1.

B. ESTIMATION OF ARRIVAL TIMES

The methodology used in [Ref. 1] to estimate travel times, is somewhat lacking

for this application. Plots, as in Fig 2.8, were used to select what appeared to be

completely resolved arrivals. The criteria for determination of suitable arrivals for

processing were simple. "The arrival must not disappear (an indication of an unstable

path) and it should not merge or split with another arrival (an indication that the

ray paths are not resolved)" [Ref. 1]. While these statements are perfectly valid, the

13
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Figure 2.10: Correlogram display of received acoustic signals from station
J, 14 Dec 88. Consecutive unalraged 1.9375 second maximal-length se-
quence periods are quantized, converted to pixels and stacked to form a
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criteria were applied to averaged data displays on which a maximum of one hour of

data could be plotted. A quick look a Fig 2.9 clearly shows a more complex peak

structure not evident in the Fig 2.8, the averaged display.

The procedure after arrival selection was to identify a mean track value from

the averaged waterfall data plots. A specific number of points on either side of this

mean value were chosen to create a track window. A sample track window, for station

J arrival B, is included in Fig 2.8. This is a much broader track window than was

applied in the original processing. Because the original track windows were both

narrow and fixed in position, it was possible for long trends to move the arrivals

outside the track window for periods during the six hour data segment. The purpose

of the track window was to define a search region for an algorithm to select a constant

measurable feature on each arrival. Since only relative travel times were of interest,

the position of this feature, inside a 1.9375 second maximal-length sequence period,

was taken as the arrival time estimate. The peak amplitude position was a convenient

feature of choice, because it was computationally easy to locate. This approach has

proven to be ineffective on the MBTE data set, because of the presence of partially

resolved arrivals (i.e more than one peak) in the track window.

Basic arrival time uncertainty is defined in terms of SNR and signal bandwidth

as,

t 1 (2.2)

-27rBVS7Ti

where B is the bandwidth of the transmitted signal and SNR is the signal to noise

ratio [Ref. 5]. For a 10 Db SNR and a bandwidth of 16 Hz the uncertainty, at, is 3.1

msec. This uncertainty is somewhat reduced because the quadrature demodulation

channels were sampled at 64 Hz which constitutes a four times oversampling of the

data stream. The matched filtering treated the resulting bit stream as consisting of

four separate channels. Appropriate interleaving after matched filtering, permitted
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Figure 2.11: Arrival periods A, B and C in received acoustic signals from

station J, 14 Dee 88.

the use of curve fitting techniques to match the peak trends. Interpolation, (cubic

splines selected) of the curve fits, identified peak positions (i.e., arrival time) to less

than a millisecond. The actual uncertainty is more than the interpolated resolution,

but less than values computed by Eq 2.2 for a reasonable SNR. An average SNR. of

10 dB is a conservative estimate of the actual value.

Figure 2.11 is an averaged waterfall display of station J for a period showing

the three distinct arrival periods of interest. These arrivals are designated as A, I1

and C with A being the earliest and C the latest. Figure 2.12 shows the travel time
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Figure 2.12: Arrival time track for arrival A of station J using original
technique.

fluctuations or arrival track, when the original technique, described above, is applied

to arrival A of station J. The most striking feature of this track, is the number of

travel time estimates that appear at the edges of the track window. The amount of

clipping appears excessive since the averaged waterfall plots such as Fig 2.11 would

indicate that more of the estimates should fall into the track window.

The complex peak structure, indicated in Fig 2.9, prompted a check of the

premise that only single peaks exist in a track window. The verification procedure

utilizes a slightly different approach to the problcm. To accommodate Fast Fouricr

17



Transform (FFT) interpolation, the number of points in the track window was se-

lected to be a power of two (i.e. 8, 16, 32, etc.). Interpolation using the FFT is

accomplished by Fourier transforming a sequence and zero padding the center of the

result to the desired power of two. Performing an inverse Fourier transform on the

padded sequence yields the new interpolated sequence, which in this case, yields a

smooth curve that can be numerically differentiated with acceptable accuracy. Inter-

polated track windows are doubly differentiated to enable removal of local minima

since only the local maxima or peaks are of interest. Fig 2.13 shows the performance

of this processing, for a single trace from station J arrival B, with a 16 point repre-

sentative track window interpolated to 512 points. The solid line is an overlay of the

interpolation on the track window points, which are connected by the dashed line.

The computed positions of the local maxima are indicated by the vertical lines. It is

important to note that although one peak is dominant, more than one is present.

The problem with partially resolved arrivals is clearly demonstrated in the next

two figures. Figure 2.14 and Fig 2.15 show two consecutive maximal-length sequence

lengths or two consecutive data frames from station J. The track window is high-

lighted by overlaying the FFT interpolation as demonstrated in Fig 2.13. Vertical

lines mark the peak positions as computed using the second derivative. Figure 2.14

shows a dominant peak near the center of the track window. In Fig 2.15, the domi-

nant peak has moved to the left of the track window and is very pronounced. Note

however, the presence of a very distinct low level peak at the approximate position

of the dominant peak of the previous figure. The peak amplitude tracker described

above would indicate an arrival time shift between dominant peaks of the adjacent

data frames.

This measured shift is fals( Interference effects between the partially resolved

arrivals cause large amplitude fluctuations in the arrival structure, making each of

18
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Figure 2.13: Station J arrival B 16 point track window FFT interpolated

to 512 points, showing the positions of the local maxima located by a

numerical second derivative operation.
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the closely spaced arrivals amplitude dominant in different data frames. There is no

doubt that the amplitude fluctuations are driven by path differences induced by such

processes as the ray interactions with the surface wave structure, but, the arrival time

estimation, as implemented, constitutes a non-linear filter. In this case, the surface

wave component of the signal is enhanced by actually measuring shifts of amplitude

dominance between closely spaced arrivals. This explains the excessive travel time

fluctuations noted for the surface wave frequencies in [Ref. 1].

Figure 2.16 was produced for arrival B, the highest amplitude station J arrival,

by running the FFT interpolation and second derivative routines on the track window

for each frame of the data and computing a histogram from all the peak measure-

ments. The figure shows at least seven distinct peaks in this window. The peaks on

the extreme left and right sides of the window might be dismissed as edge effects from

the interpolation. This would still leave five arrivals which contribute to the partial

resolution problem. The arrival fluctuations of interest in tomography would be de-

viations about a single peak of the histogram. Obviously, it is desirable to develop an

algorithm that would sort through the peak structure, independent of the amplitude

of the peaks in the track window for each data frame, and select the peak belonging

to the same sub-arrival as in the previous frame. This is the basic concept used in

the advanced tracker discussed in the next chapter.
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III. LMS ARRIVAL TIME TRACKING

Since the difficulties with the original tracking method were caused by its depen-

dance on the absolute amplitude of the arrival peaks, a tracker that ignores absolute

amplitude information should give better performance. The FFT interpolation and

second derivative method for locating local maxima, as described in earlier, is quite

adequate to give accurate peak arrival time estimates of all the peaks in a track win-

dow for each maximal-length sequence period. What is needed, is a way to pick the

correct sub-arrival from trace to trace. At first, a simple exponential average of the

estimated arrival time was computed at each step. The peak selected in the next track

was the peak with the closest arrival time to the average value being maintained from

the previous traces. This produced a simple adaptive scheme that showed improved

results. The variance on the track was reduced and so was the clipping. An adap-

tive predictor algorithm would be capable of following more complex fluctuations and

trends in f he data than the simple exponential average. The new concept utilizes a

Widrow-Hoff least mean squares adaptive algorithm with an efficient implementation

to replace the exponential average tested in early development.

A. OPERATION OF THE LMS PEAK TRACKING ALGORITHM

The Widrow-Hoff least mean squares adaptive algorithm is discussed in [Ref.

6]. Its implementation as an adaptive line enhancement technique is investigated

thoroughly in [Ref. 7]. In the present application, the algorithm operates akin to a

sort of phase lock loop. The algorithm is initialized in the vicinity of a signal and it

is required to sor* out the dominant process and adapt its coefficients to follow this

process as closely as possible. The algorithm uses as a measurement, the arrival peak
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position closest to the LMS predicted position. The adaptation feature allows it to

follow long trends in the data. In this form of implementation, the LMS algorithm

will give preference to the signal with the least dynamics.

Figure 3.1 is a schematic block diagram of the LMS implementation for the

arrival tracking problem. The algorithm has two adjustable parameters, the order of

the tap-weight coefficients and the adaptation parameter p in the tap-weight vector

update equation. This equation is given as,

W(k + 1) = W(k) - 2pe(k)X(k) (3.1)

where W(k + 1) is the tap-weight vector to be applied in the k + 1 iteration, W(k)

is the present tap-weight vector, p is the adaptation parameter mentioned above and

e(k) is the error between the prediction and the measurement for the kth iteration.

The predictor operates as a conventional finite impulse response (FIR) filter, with

the application of a tap-weight vector to L, where L is the filter order, previous

measurements of the process. The difference is that a prediction error filter is formed

and the weights are adjusted to minimize, in a least mean squares sense, the error

between the prediction and the measurement. This type of filter is able to handle

nonstationary data streams with slowly shifting poles.

There are three items which must be addressed to use this algorithm effectively

in this application. The first is how to set the filter length, the second is how to

determine a value for p and finally how is the filter to be initialized. The LMS

algorithm is a relatively inexpensive computation, so the filter order can selected

based on data characteristics. Obviously, the longer the filter, the more of the past

measurements that will be incorporated into the prediction. Ninety-six coefficients,

utilizing 3.1 minutes of past data, provides sufficient memory for the first three periods

in Table 2.1. Ideally a comparison study of the effects of filter length should be
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completed. This must be done when the data and algorithms have been moved to a

more capable machine. Present run times are on the order of 24 hours for a single

arrival track. This is not much longer than the original method and considering

the improvement that will be demonstrated later, the results warrant the additional

processing time, but make a full optimization inappropriate.

The adaptation parameter can be chosen in accordance with some simple rela-

tions derived in [Ref. 7]. The full derivation of the the Widrow-Hoff LMS algorithm,

with the solution via the method of steepest descent, is not included in this thesis

work. Sufficient literature exists on most aspects of the implementation and the filter

characteristics, for a variety of applications. Chapter V of [Ref. 6] is devoted to the

development of adaptive algorithms based on LMS techniques. It is sufficient here to

state some of the more important results.

The adaptation time constant is related inversely to the eigenvalues of the cor-

relation matrix of the process. There are as many time constants as there are filter

weights according to,
- 1p (3.2)

where r - is the pth adaptation time constant, p is the selectable adaptation param-

eter and AP is the pth eigenvalue of the correlation matrix [Ref. 7]. Some further

manipulation will show that,

1 1
me (3.3)

4MAv 4p tr(R)(3)

where ,,, is the convergence time constant of the mean square error, Aave is the

average eigenvalue and tr(R) is the trace of the correlation matrix. The significance

• , ,he of Eq 3.3, ;. that it chows that p must be chosen less than 1/A,m for the filter

to converge [Ref. 7]. The closer y is chosen to this value the faster the convergence,

but also the more misadjustment noise occurs in the weight vector and thus, more
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noise is generated in the filter output.

For the MBTE data set the a parameter is chosen to achieve a desired result

during the filter initialization procedure. First note that this filter is required to

operate with non-zero mean track values. In fact, the performance appears to be

better with the mean offset, than if the track is processed with the mean removed.

This point is not clearly understood, but is related to the generation of the W tap-

weights. The values of the weights generated, are of greater magnitutk fo- a non-zero

mean offset, than those generated with a zero mean sequence. The larger tap-weight

values tend to make the filter more responsive in this application. It may be that

the zero mean filter simply needs more time to properly adapt to tile sequence. In

any case, the filter is initialized by beginning with a filter of one coefficient and

adding a coefficient, to increase the filter size, as each new data sample is processed.

This is continued until the desired filter order is met. The adaptation parameter is

selected such that, br the time the desired filter order has been achieved, the start

up transient has reached a desired mean arrival time. The algorithm never failed to

converge using this criteria, indicating that the a < 1/A,, limitation mentioned

earlier has not been violated. This method of setting p might not work for other

filter orders or mean arrival times but is a good first try for most cases.

During the initialization process, the algorithm is forced to chose values closest

to a fixed mean line of interest that has been predetermined :id is one of the inputs.

As soon as the number of tap-weights reaches the desired order, the algorithm is left

to run on its own predictions. The start up transient can be eliminated by running

the filter backward on the data after the process has proceeded forward for some

time. In fact, for better accuracy, the algorithm could be set to proceed forward and

backward through the data until some specified global error tolerance between passes

is achieved. A future implementation of this sort could provide some interesting
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results. Figure 3.2 shows the start up transient overlayed on a correlogram for arrival

B of station J. About 100 points are lost for post-processing. This is not significant

enough, at this point in the concept development, to warrant implementation of the

backward filter to eliminate the transient. Production code for processing arrivals

from all the stations of the MBTE, should include this feature.

A simple test case for the algorithm was devised by creating a short data set

consisting of three parallel noisy signals, spaced approximately as in the station J data

set. A fourth noisy sinusoid with an amplitude spanning all three parallel signals was

added. The task of the LMS algorithm was to track the sinusoidal test signal through

the contamination caused by the other paths. The test data set is shown in Fig 3.3.

The results of the tracking is shown in Fig 3.4. The results are quite reasonable. Some

capture by each of the parallel paths is evident, but the algorithm succeeds in the

tracking the sinusoid with some phase delay as would be expected from any filtering

operation. Bearing in mind that the noise levels selected for the test are quite severe

as seen in Fig 3.3, distortion could be minimized by a second low pass filter operation

designed to smooth the effects of the path capture experienced by the tracker for the

test data. Variation of the parameters of the tracker could also improve performance.

The parameters used in the test processing were, a filter order of 96 tap-weights and

an adaptation parameter of 0.003.

B. COMPARISON OF ARRIVAL TRACKING METHODOLOGIES

At this point, it is useful to compare arrival tracking techniques to show the

similarities and differences. The original processing from matched filtering to post

processing is shown in the schematic block diagram of Fig 3.5. This figure emphasizes

many aspects of the processing. The right hand side blocks of the figure indicate

some of the storage requirements, the hardware used and the software necessary
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for the method. All of the prncessing for the original method was done on a PC-

AT compatible Zenith computer with interfaces to Bernoulli 21 MB maz storage

removable hard disks. Most of the programs were written in Microsoft FORTAN

Version 4.0 for the PC and are included in [Ref. 1]. MATLAB, a product of The

Mathworks Inc., Sherborn, MA and SURFER, a product of Golden Software Inc.,

Golden, CO were used mainly for their plotting capabilities in the original processing.

One of the limitations to analyze this data set, was the restrictions on processing

time, memory and storage imposed by the use of the PC. The availability of more

powerful machines such as the SUN workstations will make future processing much

more effective.

Figure 3.6 contrasts the implementation of the LMS method with the original

method of Fig 3.5. Note that a VAX 11/785 virtual memory machine is used for some

of the processing steps in the new implementation. The need to manipulate larger

arrays outstripped the capabilities of the PC and thus MATLAB on the VAX was

quite useful in this respect. Additionally, the program for generating the correlogram

displays was part of a larger software package written in FORTRAN for the VAX

computer with the only supported output device being the Imagen laserprinter con-

nected to the VAX machine. The new processing programs were written in MATLAB

and are directly portable to any machine running the MATLAB software package.

These programs are simple to understand, easy to write and utilize double preci-

sion arithmetic at all stages of processing. To solve a data access problem with the

Bernoulli disks, a MATLAB MEX file interface program was written in FORTRAN

to directly interface the Bernoulli disks with the MATLAB software.

Besides the differences in display of the match filtered output (correlogram vs

SURFER produced waterfalls), the original method used a fixed spline interpolation

procedure versus the F1 T interpolation procedure adopted for the LMS method. The
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limitations of the spline method implemented were discussed in Chapter II section B.

The FFT interpolation in the LMS implementation, has the limitation that the num-

ber of points in the track window must be a power of two. The interpolated resolution

required for the FFT must also be a power of two. Providing these limitations are

met, the absolute amplitude independence of the differentiated data means that the

track window can be large as desired without fear of interference from close resolved

arrivals, as is the case with the peak amplitude method. Experimentally, it has been

determined that a good combination for this data set is a 16 point track window with

a 512 point FFT interpolation.

Another significant difference, besides the arrival time selection method which

will be discussed later, is the form of the output from the two different approaches.

There is more information available from the LMS implementation. Two LMS filters

are run in parallel; one using the arrival time information of the peaks and the other

using the amplitudes of the peaks measured by the arrival time filter. A feature of

the LMS filter is that it automatically divides the tracks into high and low frequency

regions. The LMS filter predictive output, tracks slow trends in the data, while the

difference between the measured values and the predicted values or the so called error

signal, track the high frequency components of the data. In terms of this data set,

the arrival time filter places the higher frequency surface wave components in the

error signal, while providing information about the internal wave spectral region in

the predictive filter output. Although the LMS algorithm operating on the amplitude

is restricted to utilize the values measured by the arrival time filter, it can still be

used to form a simple track quality figure. Separate from the actual amplitude LMS

filter output tied to the arrival time LMS selections, the routine is allowed to select

a peak from the differentiated peak set. This selection is compared to the arrival

time selection. If the same peak is selected, a counter is incremented. A count of
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the number of times the filters chose the same peak from the differentiated peak

set, divided by the total number of frames processed, defines a percentage value of

relability. If the processes are in fact predictable and the filter is in fact tracking, these

two filters should select the same point a majority of the time. A running performance

indication is then available as the tracker proceeds through the data. Additionally,

phase measurements are recorded for the arrival times but an LMS predictive filter was

not appihed. An LMS filter operating on the phase information is easily implemented,

but the significance of the phase as it applies to the physical process is not yet well

understood. It is expected that phase values, once well understood, will play an

important role in improving the tracking ability of the LMS technique.

The original method provides four outputs; arrival time, arrival phase, arrival

amplitude and a track quality figure based on a SNR measurement. This SNR mea-

surement is, however, of little value considering the interference of the multiple peaks

in the arrival windows. Post-processing in both cases refers to spectral estimation in

the surface and internal frequency domains. As mentioned, data from the error signal

of the LMS technique lends itself to immediate spectral processing in the surface wave

region. The maximum amplitude in the track window criterion requires low pass fil-

tering to make the track usable in any region, since the high frequency effects of the

clipping have to be eliminated. Figure 3.7 is a flow diagram of the tracking process

indicating three arrival selection criteria. Figure 2.12, Fig 3.8 and Fig 3.9 show the

processing results for each criterion as it is applied to arrivals of station J. To allow a

fair comparison, Fig 3.9 shows the peak positions derived from the second derivative

operation using the LMS filter and not the output of the filter itself which is shown

in Figure 3.10. The second derivative maximum peak amplitude method shown in

Fig 3.7, shows some slight improvement when compared to the track character of the

maximum amplitude in the window method shown in Fig 2.12, but the improvement
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Figure 3.8: Arrival B station J track generated by the second derivative
peak amplitude method.

in Fig 3.9 is much more dramatic. Clipping has been eliminated and the variance on

the track is considerably reduced. The results of the filter output of Fig 3.10 are even

more impressive.

An effort was made to have the LMS algorithm attempt to respond to the dom-

inant arrival in the track window by biasing the results toward the higher amplitude

arrivals in the window. This biasing was achieved by forcing the second derivative

algorithm to ignore peaks below a level determined by the average amplitude values

of all the peaks in the window for a particular trace. The amplitude biasing has a
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Figure 3.11: Arrival B station J track generated at the output of the LMS
adaptive filter with applied amplitude bias in the arrival selection.

dramatic effect and shows the peak switching phenomena of the original technique

much clearer. Compare the arrival B track in Fig 3.11, generated by the LMS algo-

rithm with amplitude bias, with that of Fig 3.10, generated by the LMS algorithm

without amplitude bias. Figure 3.11 shows a periodic switching behavior which is a

result of an interaction between closely spaced arrivals.

The final check on performance comes from processing arrivals A, B and C of

station J and overlaying the results on the appropriate correlograms. Three LMS

tracks are overlayed ori the correlograms. Figure 3.12 shows the initial 20 minute
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data block of station J. Appendix D contains the correlograms for all the data pro-

cessed from station J. Next, two additional tracks are overlayed for the performance

comparison. These additional overlays consist of a low pass filtered arrival A track

from the maximum amplitude in the window method (see Fig 2.12) and a low pass fil-

tered arrival B track from the second derivative peak amplitude method (see Fig 3.8).

Although these traces are all plotted with solid lines, they are easily distinguished by

character alone. The LMS tracks all have a fine structure. The other two tracks are

smooth with considerable more variance than the LMS tracks. The improvements the

LMS technique provides are evident in the correlograms of Appendix D. The LMS

technique tracks the fine structure much more closely than the other methods. It is

also evident that the method performs much better on the highest amplitude arrivals.

The arrival B track is much better behaved than the arrival A of C tracks which have

periods of low SNR or total lack of signal. The relationship of the track to the data

is quite clear in the correlogram plots and as such, they provide a necessary check

on track validity which will be required in the interpretation phase of data from the

MBTE.

C. LMS TRACKING SUMMARY

The advantages of the LMS tracking algorithm can be summarized as follows:

1. No dependence on the absolute amplitude peak of the arrival structure.

2. Learns about the process as it proceeds, thus the track quality improves with
each update.

3. The implementation is extremely fast and simple.

4. Automatically divides the data into frequency domains, in this case, surface
and internal wave regions.

5. Provides adjustable parameters to (filter length and adaptation parameter) to
adjust tracking as required by the arrival structure.

6. Does not require a fixed track window after initialization, and thus, can adapt
to signals that vary slowly over a wide region.
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Figure 3.12: Correlograni of station J with overlayed arrival track comn-

parisons.
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The one disadvantage for this tracker is that there is no easy way to control

which sub-arrival the routine locks on to. One must be satisfied with the routine's

choice or set up an iterative forward-backward implementation with multiple passes

to achieve a desired result.
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IV. MODIFIED RLS SPECTRAL ESTIMATION

Wave buoy data, collected during the Monterey Bay experiment, provide a mea-

surement, against which, spectral processing of the tomography data can be compared

for the surface wave frequency domain. No such truth exists for any internal wave

phenomena that might have also been present during the experiment. To handle the

possibility that internal wave measurements might be highly nonstationary, an adap-

tive algorithm was devised to provide snapshots of the process at a resolution better

than normally available from conventional periodogram based processing. The tech-

nique is a combination of two algorithms described in [Ref. 6]. A modified forward-

backward linear predictor (MFBLP) is implemented using an update methodology

borrowed from an recursive least squares (RLS) technique. An adjustable forgetting

factor enables the algorithm to handle both stationary or nonstationary (shifting

poles) data streams. This algorithm is discussed along with some performance test

results in the following sections. The combined algorithm provides identical results

as the MFBLP algorithm [Ref. 6] for stationary fixed length data sequences. For an

in depth comparison of the MFBLP technique with other modern spectral estimation

techniques see [Ref. 8].

A. METHOD OF LEAST SQUARES

In order to combine algorithms, some commonality must exist. The MFBLP and

RLS algorithms are connected by a common basic equation requiring a least squares

solution. The difference is in how the least squares solution is obtained in each case.

The RLS method depends on the matrix inversion lemma [Ref. 6, page 385] which

yields a recursive implementation, while the MFBLP depends on a minimum norm
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solution ,roduced from a matrix pseudoinverse [Ref. 6, pages 336-337]. In esrh case,

a tap-weight vector for an autoregressive process is produced. This tap-weigL.: vector

is applied to the sample space to form a linear predictor. This predictor is used to

extend a data subset in a section of interest. Forming a periodogram of the extended

data yields a high resolution snapshot of the process for the selected data section.

Collecting and displaying these snapshots, at some interval in a waterfall or sonogram

display (sonogram refers to frequency greyscale displays while correlogram refers to

the output of a matched filter in greyscale format), produces a picture of the spectral

dynamics of the process.

The deterministic normal equation for the least squares problem is given by,

AHAtb = AHb. (4.1)

where H is the Hermitian operator or complex conjugate transpose, A is the data

rn-.1 ,x, the tap-weight vector for which the sum of error squares :s a n- ..- n,

AH is a forward-backward data matrix as given by,

I z(M) --- x(N-1) : z(2) ... x*(N-M+ 1)]

AH = x(M-1) ... x(N- 2) : z(3) x(N-M +2) (4.2)

x(1) ... z(N- M) x*(M + 1) .-- x(N)

and b is the desired response vector given by,

x(M + 1)

x(N)
b =... (4.3)

xO(1)

*(N - M)

where * denotes is the complex conjugation operator, N is the number of data points

and M is the desired order of the tap-weight vector. The desired response vector b of
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Eq 4.3 is defined as the next data point of the cor ,.,iding rows of AH . The right

hand side (RHS) of Eq 4.1 can be written as

0 = AH_. (4.4)

The least squares solution, or the sum of th error squares, is minimized only

when the estimation error vector is orthogonal to i. estimate of the desired response

vector. The data matrix AH contains both the forw rd (left hand partition of Eq 4.2)

and backward (right hand partition of Eq 4.2) cova; ance matrices, which doubles the

matrix size. Since statistics of a stationary proces are assumed equivalent for both

directions, the solution benefits from a form of a, -raging. The uncorrelated noise

tends to average to a lower value, while the correlated signals are enhanced in the

processing. A concise explanation of linear predi, 'n leading to the pseudoinverse

solution is presented in [Ref. 9] and is summarized here for clarity. Only the forward

covariance data xatrix is used in the developCUL .... 6 eneralization to the forward-

backward data matrix of Eq 4.2 is straightforward.

Linear prediction can be illustrated using a sliding window [Ref. 10];

4== [wI w2 .... TM
XN XN+i .... ZM+i XM .... x

The dot product of the coefficient array w with ,.ie data array can be written in

matrix form as;

XM ... X2 X1 w1 XM+1
XM+I .. 3  2 W2 XM+2

XN 1 ...... ZN M IW M  XN

(4.5)A . w = z

data matrix tap - weight.- data predictions

where { M -modelord, r
N - data lengt
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The problem is uniquely specified when the data matrix in Eq 4.5 is square and of

the same order as the tap-weight vector. The problem is overspecified when the data

matrix is larger than the tap-weight vector and the number of solutions is given by

(N-M)! where N is the number of data points and M is the order of the tap-weight
M!(N-2M)!'

vector. The overspecified case requires least squares techniques. Equation 4.5 can be

represented as a discrete difference equation and the presence of a single undamped

sinusoidal frequency component is then described by a conjugate pole pair on the

unit circle. In general, 2M data points are required to solve for M sinusoids as

demonstrated in the second order example,

X:3 X:2 W/2  X4

The pseudoinverse,

tb= (AHA) - AHb, (4.6)

accommodates the overspecified set of linear equations without compromising the so-

lution for the uniquely determined case. A deterministic solution exists for noiseless

data or a best fit in the least squares sense exists for noisy data. The only difference

in Eq 4.1 and Eq 4.6 for this application, is the AHA matrix. Equation 4.1 is taken

to be the modified covariance matrix, while AHA in Eq 4.6 is taken to be the for-

ward covariance matrix only. The ability of the pseudoinverse to handle overspecified

systems makes the same equation applicable in both cases.

When the data array is large compared to the order of the process (i.e. the

number of sinusoids), forming AHA from all the data produces unmanageable matri-

ces. Consider 64 data samples from which a model order of five is selected. Using a

forward-backward matrix data arrangement, A l will be of order (5 x 118) and A will

be of order (118 x 5). The resulting order (5 x 5) AHA matrix is quite manageable but

forming the product is cumbersome. A larger data set would present a considerable

49



increase in computational and storage requirements. A way out is provided by the

RLS matrix update method. This method minimizes data storage and computational

requirements needed to form AHA but produces identical results.

1. RLS UPDATE EXTENSION

The RLS update method starts by forming the AHA covariance matrix

from the minimum required nimber of data points. Each subsequent sample then

dynamically improves the covariance matrix through a recursive equation update

which can be written as,

(AHA)n = (AHA)n. 1 + (AHA)a (4.7)

where (AHA),a is formed by summing an outer product of the last row of the forward

partition and an outer product of the last row of the backward partition of An, the

data matrix for n points. These are added to the previous covariance matrix to form

the new covariance matrix. This recursion permits a least squares solution for a large

data set without requiring matrix multiplies beyond the selected order of the process.

The method is illustrated, for a second order case with a forward backward data

arrangement, as follows; [Ref. 9, page, 38]

N= 4:, M=2:

F 11
AT I, AH= [2 X3 z; X;3

Z; J1 , , ; C4

T22 + T22+ +1*2++ z; 1
(AHA), = [ *12++2 r''xz;+Zx;* z + +*Z; +" JX? + Z2 -- *e 2 ;

N = 5:, M =2:

(AHA) 2 = [ 3 .2.+;; + .0+ . X 2 '
XJ2+XZ ZX ;4 +~~z T2 Z~* 3*+.T

N=6:, M= 2: X2 = + =-2+ X24 + X 2*+ ;2 + T2 Zj-- + 2-T3 + W3-T4 + =Z*Z*+ ;X= *+ X,*X5

(AHA) 3 = [ 3'+* *3+x+2 Z 3 +Z*"" "+* +-
2  1 +

[ 4 Z + s 6 4 S+ -*2

The recursive update process must also be applied to the RHS of Eq 4.1

which is the written in terms of 0 in Eq 4.4. The update using the 0 representation
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can be written as,

On = On-_ + OA (4.8)

where the recursive update is formed by summing the previous On-, value with an

inner product of a matrix consisting of the last column of the forward partition and

the last column of the backward partition of AH , with the new additions to desired

response vectors of bn for the forward and reverse partitions. For example,
N=4:, M.=2:

AM XX32* X; X
1 [X ; .4, ZI

N= 5:, M=2:01 2X ++ X34+XX2 2

XI 3 + 3234 + X 1 + X2s; j L35 + *;=;

N =6:, M = 2:

93 - 2X3 + 3X4 +X4 + *X+Z+XZ + XX* 1 + [5 X63 +3 ]4 'XXIX3 + X2X4 + X3X5 + XI '; + Z;X4 I Z4X =,= + X ;

To clarify further, the AfH matrix for the (2 x 2) example above where N = 5 is as

follows,

N=5:,M=2:A' = 2 X3 X4 ; W; X3 .

=1 X2 X3 X; X' S;
The last column of the forward partition and the last column of the backward partition

along with the new points to be predicted from the b vector can be written in the

update matrix equation as,
4 34 1[,:

X3 X* 3 3335+ 3; J

which is the matrix addition for the N = 5 step in the previous example.

The recursive update for the covariance matrix and the desired response

vector of Eq 4.7 and Eq 4.8, allows the introduction of a weighting factor that can

accommodate a nonstationary (shifting spectral poles) data stream. These equations

can be generalized as;

(A HA), = A(A HA)n._ + (AHA)A (4.9)
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and

O-- AOn_ 1 + 0A, (4.10)

where A is an exponential weighting factor applied to past data. To quote from [Ref.

9, page, 39], "Typically, A is less than unity, thereby aging out old data, hence the

expression, Forgetting Factor." A unity forgetting factor would simply return the

least squares solution of Eq 4.1. To set A, simply select the number of updates (some

time interval based on sampling rate) and decide the level of suppression required at

that point. For example, suppose the desired suppression is 10- ' after 60 samples.

Then A'° = 10-6 and A = 0.8254.

The forgetting factor contributes to the overall numerical stability of the

algorithm, when it is employed on large data sets. The diagonal elements of the

covariance matrix are sums of squares. In a finite arithmetic implementation, if the

data are not zero mean, AHA will numerically saturate, since normalization of the

matrix is not included in the algorithm. Even if the data are of zero mean, the

numbers along the diagonal will grow steadily if A is unity. A forgetting factor less

than unity, alleviates the problem of saturation in most cases. However, any data

should be processed with the mean removed to minimize the likelihood of a numerical

problem.

The equation,

(AHA). t b, = 0,, (4.11)

represents the algorithm thus far. The object is to find a solution for Z^,, of the

selected order. The covariance matrix (AHA), and the vector On contain a description

of the process for a period dictated by the forgetting factor. The obvious solution

is to compute (AHA)I'. This is computationally inefficient and is not an optimal

approach. Traditional RLS would utilize the matrix inversion lemma to develop a set
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of recursive equations that avoid direct computation of the inverse, yet will converge

to the correct result after some number of iterations.

2. THE MFBLP SOLUTION

At this point, the MFBLP algorithm described in [Ref. 6, page, 349],

can be used with minor modifications to produce high resolution dynamic spectra

of the process from the (AHA)h matrix. Chapter 7 of [Ref. 6] provides detailed

derivations and discussions of least squares problem and the reader is referred there

for a rigorous treatment. The salient points are summarized here as they apply to

the implementation employed. The subscript n has been inserted in the equations

presented, to emphasize the RLS extension that will be utilized in the final combined

algorithm. The subscript is to be suppressed for the conventional MFBLP algorithm

discussion that follows.

Letting A* denote (AHA),IA,,, the pseudoinverse matrix, Eq 4.11 can be

rewritten as,

tb, = A#b,, (4.12)

where all elements of the equation have been previously defined.

A* is also defined in terms of the singular value decomposition (SVD). A

statement, without derivation, of this formulation of the pseudoinverse is [Ref. 6],

A# Xn[En 0 YH (4.13)

where,

E'n = diag(aln, an ,~

and the an's are the singular values of the pseudoinverse matrix. Wn is the rank of

the matrix and if A# is Hermitian, the singular values are simply the absolute value

of the eigenvalues of A*. In general, if A* were an order L x M matrix, X, would be

a M x M matrix of columns of eigenvectors of (AHA),n and Yf would be an L x L
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matrix of rows of --igenvectors of (AAH),,. The matrix containing E would be order

MxL.

Substituting Eq 4.13 into Eq 4.12 yields,

6n-Xn[ 0 o]1Hbn (4.14)

which can be partitioned as,

=b [xl X 2.][E 0 ] b. (4.15)

This reduces to
= (4.16)

and using the result from [Ref. 6, Eq 7.79, page, 333],

Yin = A, rX-1 ' (4.17)

then,

n,= X1 n X-2X H H (4.18)

which in terms of summations becomes,

W X i n  
-

tbn = Z-xA'bn.. (4.19)
i=i In

Using Eq 4.4 and the fact that X1, is an eigenvector of the deterministic correlation

matrix (AHA)n with associated eigenvalue Ai,, = a?,, the critical result becomes,

W

I = ( ,in). (4.20)

This result allows computation of the tap-weight vector of an AR process from the

eigenvalues, eigenvectors and a simply computed desired response vector. The sig-

nificance of this result cannot be understated. To clarify the extensions that are

employed in the new algorithm, the steps used in the conventional MFBLP method

are described. These are;
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1. Form the data array A H according to Eq 4.2 arrangement.

2. Use the SVD on A" to compute the eigenvalues and eigenvectors of the M x M
deterministic correlation matrix (AHA).

3. Separate the eigenvalues belonging to the signal and those belonging to the
noise subspaces. The signal subspace contains the K dominant eigenvectors.

4. Form the 0 vector according to Eq 4.4.

5. Use 0 and the signal subspace eigenvectors and eigenvalues (Eq 4.20) to compute
the predictor tap-weight vector.

6. Form the (l + 1) x 1 prediction error filter tap-weight vector,

7. Use the a tap-weight vector to compute the angular frequency of the of the
sinusoids as peaks of the sample spectrum according to,

1I
S(W) = 1___

Ialls(w)12

where s(w) is the (M + 1) x 1 sinusoidal signal vector:

1 1
exp -jw

exp -jMw

Tufts and Kumaresan [Ref. 11] have experimentally determined the opti-

mal order for this algorithm to be M = 3N/4. In its present form, the algorithm

performs well as a frequency estimation tool, but to quote [Ref. 6, page, 368], "In the

conventional FBLP method, S(w) represents the autoregressive (AR) power spectrum

of the process. However, this is not so in the modified FBLP method." Figure 4.1

gives an example spectra computed using the MFBLP method as described above.

The 64 point test data set was obtained from [Ref. 12] and consists of two closely

spaced equal amplitude sinusoids, a low level sinusoid spaced away from the dominant

pair and colored noise. Spectral truth is displayed on the plot in dotted lines while a
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standard periodogram of the data set is also included using a dashed line. This data

set will be used for tests in a subsequent section.

Figure 4.1 clearly demonstrates the basic difficulty. The periodogram, com-

puted using a rectangular window, has problems both with resolution and sidelobe

interference. Sidelobes may be reduced at the expense of resolution but httle else

can be done to improve the spectral estimate using standard Fourier processing. The

advantage of conventional spectral processing is that relative and absolute magnitude

information is preserved.

This is not so with spectra computed using the MFBLP technique. The

utilization of only the signal subspace eigenvalues and eigenvectors, dictates that

spectra computed using this method contain only the principle components of the

time series (i.e. the correlation matrix does not reflect the complete process). It

is evident from Fig 4.1 (top trace); that relative and absolute magnitudes are not

preserved. The figure clearly shows the accuracy of the frequency information tot

the dominant components and the lack of other spectral information. Fortunately

an extension exists which combines the benefits of periodogram processing with the

principle component enhancement of the MFBLP technique.

3. SPECTRA USING LINEAR PREDICTION

Instead of relying on the spectra from the tap-weights to characterize the

process, the weights are used to extend the data via linear prediction. Conventional

periodogram analysis is then used on the extended data set. This modification to the

conventional MFBLP technique is investigated in detail in [Ref. 8] with impressive

results. The reader is referred to this thesis for a comparison of the MFBLP method

with many other modern spectral estimation techniques. Its performance is noticeably

superior in many respects. Figure 4.2 demonstrates the performance of the technique

on the Kay data set. The 64 point data set is extended in the forward and backward
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directions by 96 points, yielding a new time series of 256 samples. The important

parameters used for the extension were, 48 tap-weights computed using the first

eight principle eigenvalues and eigenvectors of the covariance matrix decomposition.

Rectangular windowed and Hamming windowed periodograms of the original 64 point

time series, zero padded to 512 points, have been overlayed for comparison, along with

spectral truth. Note, to preserve clarity in the plot a windowed version of the extended

periodogram was not included. The double peak observed for the low frequency low

level signal has a much improved character when a Hamming window is applied to

the extended series, as can be observed in subsequent plots.

Success of the technique can be attributed to the extension of the principle

components in the data. The added points increase the real resolution of the FFT,

but more importantly the sidelobe structure is much improved and low level signals

present in the data become visible eventhough information about them is not present

in the tap-weights. Standard windowing techniques can also be applied to improve

sidelobe structure in the spectral estimates if desired. Both relative and absolute

magnitude relationships are preserved relatively well with this method. In many

applications this is an important consideration.

At this point, operation of the combined algorithm should be reasonably

evident. Briefly the combined method will operate as follows. The modified co-

variance matrix (AHA),, is formed from the data using the forward-backward data

arrangement. This matrix is updated using the RLS update technique discussed

earlier. At any update a spectrum can be produced using the extended version of

the MFBLP technique as described earlier in this section. An important difference

between the combined technique and the MFBLP is that an SVD is performed on

the A,, or AH matrix for the MFBLP technique. In the combined technique, this

matrix is not available. An eigenvalue deco:aposition is performed on the covariance
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Figure 4.2: Samnple spectra of the MFI3LP technique with the linear pre-
dictive extension, applied to the Kay test data set.
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matrix, (AHA),. The MATLAB SVD algorithm can provide the eigenvalue decom-

position of the covariance matrix so it is utilized for its numerical robustness. Any

eigenvalue decomposition method could be used without altering the result. The

eigenvalue decompositions are the only computationally expensive aspect of the total

algorithm. Only the principle eigenvalues and eigenvectors are required for operation

of the algorithm, so any efficient method for estimating the partial decomposition of

the covariance matrix to get the principle components could be utilized to improve ef-

ficiency. Algorithms for this purpose have been discussed in the recent literature. The

term SVD used from this point on will refer to the MATLAB SVD algorithm. The

MFBLP method described in [Ref. 6] is the basis for two slightly different extensions

that yield improved performance. For lack of better terminology but to differenti-

ate between the three techniques discussed, the combined algorithm has been labeled

modified recursive least squares (MRLS). To emphasize the changes applied to the con-

ventional MFBLP technique, it will be termed extended modified forward-backward

linear prediction (XMFBLP).

B. OUTLINE OF MRLS SPECTRAL ESTIMATION

It follows from previous discussions that, with a forgetting factor of unity in the

RLS update (Eq 4.7 and Eq 4.8) and a fixed data length, MRLS and XMFBLP will

produce identical spectral results. Although it is normal for the XMFBLP to utilize

the whole data set at once, it is perfectly acceptable to form the data matrix on any

contiguous subset of data arranged to yield the desired processing order. One could

conceive an algorithm that moved through a large data set point by point, turning

out the first point in the data matrix as it accepts a new point in the last position.

This approach would be akin to segmented periodogram processing with overlap and

the spectra produced would be local high resolution snapshots of the process for each
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new data point. Since the output for a data point would include a covariance matrix

computed with only the present data segment, long term trends or low level periodic

signals might be missed without some conventional spectral averaging. An advantage

however, is that no ambiguity would exist with respect to where to apply the linear

predictive data extension of the XMFBLP algorithm. It would automatically occur

at the ends of the data subset being analyzed.

By contrast, the RLS update method provides for successive improvement of

the covariance matrix as each new data point is added. The period over which the

matrix is valid is dependant on the value of the forgetting factor over all the data

from the start of processing. Because the covariance matrix can be made to reflect

trends over a much longer period than the order of the matrix, the points at which the

linear predictive data extension should be applied, to generate a spectral estimate,

are somewhat ambiguous. The successive improvement of the covariance matrix af-

forded by the RLS update method, should provide superior performance for low level

periodic signals in a large data set without the need for averaging of the individual

periodograms, although this remains an additional processing option. For dynamic

spectral processing of nonstationary data, it is the tracking of the shifting poles of the

process that is the desired measurement and the use of the MRLS algorithm provides

an excellent opportunity to provide reasonable accuracy in this respect.

The purpose of the data extension, as described earlier, is not to accurately

predict the next data point in the sequence. The next point can either be measured,

or is already available. The intent is to sharpea the spectral frequency and magnitude

measurements of the principle components at work in the data at a particular time

and present them in a high resolution display, so changes over time can be observed.

Logically then, for the MRLS method, the data extension is applied to a data subset

that consists of the amount of data that would be utilized by the same order XMFBLP
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method if it were applied at the present update sample. This is not necessarily

optimum, but no inaccuracy is induced.

Steps in the MRLS algorithm may be summarized as follows:

1. Form the modified covariance matrix, (A"A)I, and the 01 vector (Eq 4.4) from
the minimum data required to meet the desired model order M.

2. Select the value of the forgetting factor, A, and update Eq 4.7 and Eq 4.8
recursively, for each successive data sample.

3. Compute a spectra at ary point "n" or desired interval by performing an eigen-
value/eigenvector decomposition to the covariance matrix, (AHA),.

4. Select the signal subspace eigenvalues and eigenvectors. The inclusion of some
eigenvectors and eigenvalues from the noise subspace will not greatly affect the
results, so the number selected can remain constant throughout a processing
run.

5. Apply Eq 4.20 to compute the tap-weight vector.

6. Use the tap-weight vector as a linear predictive filter to extend the local time
series forward and backward as described previously in this section.

7. Apply a conventional periodogram (windowing optional) to the extended data
subset, to compute the local spectrum for the particular period.

8. Save the individual spectra to produce a dynamic spectral display of the process.

C. MRLS TESTING AND PERFORMANCE

A sample test data set was compiled by concatenating several 64 point specific

test cases into a single time series. Each test case in the time series, was separated

from the next test case by 64 points of white gaussian noise. The forgetting factor was

set to ensure that the memory window of the covariance matrix was approximately

64 points. Real data would more than likely have smooth transitions rather than the

step transitions of this test data series, and thus, the test series provided a formidable

test for the algorithm. Table 4.1 contains a list of the characteristics of each test data

subset in the total time series.
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TABLE 4.1: A TABLE OF SIGNALS COMPRISING THE MRLS TEST
DATA SET.

Description # Points Characteristics Test
Gaussian noise 64 Unity variance Algorithm initialization
Gaussian noise 64 Unity variance Noise alone

performance

Kay data set 64 3-sinusoids, colored noise Resolution
fi = 6.4Hz, f2 = 12.8Hz, f3 = 13.44Hz performance

Gaussian Noise 64 Unity variance Case separator
Multiple signals 64 3-sinusoids SNR=3dB Equal amplitude

f, = 5.0Hz, f2 = 10.0Hz, f3 = 15.OHz performance
Gaussian Noise 64 Unity variance Case separator
Multiple signals 64 3-sinusoids SNR=-3dB SNR

f, = 5.0Hz, f2 = 10.0Hz, f3 = 15.0Hz performance
Gaussian Noise 64 Unity variance Case separator
Gaussian window 64 1-iinusoid SNR=5dB Variable amplitude

f = 15.0Hz performance
Gaussian Noise 64 Unity variance Case separator

Variables in the MRLS processing were set as follows;

1. The order selected was 47, which is approximately 3N/4 where N is 64. The
cases of interest are contained in 64 point blocks, and this is the experimentally
determined optimum for the MFBLP as described earlier.

2. The forgetting factor was set to be A = 0.9 which corresponds to a suppression
of approximately 0.001 after 64 updates.

3. The data is extended forward and backward 96 samples in each direction for
each spectral computation. The new data length of 256 points is zero padded
to 512 points for the periodogram.

4. A Hamming window was applied before periodogram processing.

5. The principle eigenvalues and eigenvectors were taken to be the first six from
the eigenvalue decomposition.

The algorithm was initialized on the first 64 points of gaussian noise data and

was allowed to run on the full 640 point data set. Outputs were taken before each case

separation noise sequence. For comparison, these outputs are overlayed with conven-

tional periodograms of the 64 point test cases zero padded to 512 points, MFBLP

plots of the tap-weight spectra and spectra computed using the XMFBLP technique.

Spectral truth is also included on each plot. The point in the time series at which
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Figure 4.3: Noise alone performance of the MAIRLS algorithm.

the spectra are taken and the maximum numerical value in the covariance matrix at

that time are displayed at the top of each plot.

Figure 4.3 shows the noise only performance of this algorithm. All noise pro-

cesses contain some structure especially when the sequences are short duration. The

figure shows that the absolute level of the spectrum is depressed in comparison to

the conventional periodogram of the test case, which is expected. The structure is

somewhat enhanced (i.e. peaks are slightly more pronounced) but there is close cor-
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respondence between the conventional periodogram and MIlLS results. The noise

suppression is a result of the additional resolution and related distribution of the

original noise content over more frequency bins. TJe structure is no worse than the

conventional periodogram result and provides an improvement in absolute terms. The

whiteness of the noise would be more evident if successive realizations were averaged.

Figure 4.4 demonstrates the performance on the Kay data test series described

earlier. Both the MRLS spectrum and the conventional periodogram have Hamming

windows applied. The performance, in this case, is superior in most respects to the

conventional periodogram result. The two closely spaced signals are easily resolved

and at the correct spectral levels considering the Hamming window affects on the

sinusoids. The low level signal is visible but is depressed from its actual value. The

tap-weight spectrum or conventional MFBLP result shows no enhancement of the

low level signal thus it suffers the same degradation as the noise. Also note that

because there is no enhancement of this component, it does not enjoy the same peak

resolution as the higher amplitude signals but it is still better than the conventional

periodogram. The narrowed sidelobe structure over that of the conventional peri-

odograrn is also a useful feature of the method. The signal peaks do not reach the

magnitude levels shown by the truth lines because of the broadening of the bin main

lobes and subsequent spreading of the sinusoidal energy due to the application of the

Hamming window. Other processing with a rectangular window has shown the peak

levels of the high amplitude signals match the truth levels. The Hamming windowed

conventional periodogram appears to better reflect the shape of the colored noise part

of the spectrum in Fig 4.4. This is probably because the bin width is large enough to

mask the noise sub-structure in this short realization. The MRLS algorithm enhances

various principle peaks in the colored noise region which gives an indication of what

might actually be occurring in that part of the spectrum for this realization.
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Figure 4.4: MRLS performance oii Kay test data sub-series.
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Figure 4.5: MRLS performance with 3.0 dB SNR and multiple sinusoids.

Figure 4.5 and Fig 4.6 give an indication of the SNR performance of the al-

gorithm with multiple signals of equal amplitude. Although most modern methods

require greater than 10 dB of SNR ratio, this method performs very well at 3 dlB

SNR and still shows good response at a -3 dB SNR. There is some frequency bias,

but the figures demonstrate the performance increase over conventional periodograrn

processing.

Figures 4.7, Fig 4.8 and Fig 4.9 give an indication of the dynamic performance
I
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Figure 4.6: MRLS performance with -3.0 dB SNR and multiple sinusoids.
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of the algorithm on a sinusoidal packet. A 15 Hz sinusoid is multiplied by a Hamming

window yielding a 5 dB SNR at the center of the packet. Figure 4.7 is 16 points prior

to the entire 64 point signal updating the covariance matrix. Figure 4.8 shows the

spectral result after the matrix is updated with all 64 points and Fig 4.9 shows the

effect of an additional 16 updates of gaussian noise. Curiously, MRLS appears to

perform better at a plus and minus 16 points than it does with the maximum number

of process samples having updated the covariance matrix. The MFBLP tap-weight

spectra shows very little enhancement for this case, thus the entire MRLS spectrum

is depressed. Using more eigenvalues and eigenvectors in the generation of the tap-

weights would likely change this result.

D. MRLS SUMMARY

The MRLS algorithm was developed to provide a reasonable compromise of

signal processing parameters to track spectral information of an unknown process.

The algorithm provides reasonable SNR performance, excellent frequency resolution

capability, a point by point process frequency tracking capability, and numerical

stability. The data set for which it is intended is comprised of six hour data sections

yielding approximately 11000 sample points spaced 1.9375 seconds apart. In order to

look at the lower frequencies the data set must be filtered and decimated. If the data

set is decimated by 10 then the number of points available for processing drops to

1100. This is not a lot of points to determine spectral dynamics, thus the necessity

to implement a higher resolution nonstationary spectral estimation scheme. Results

of processing the tomography experimental data set are presented in Chapter V.

The advantages of the MRLS processing scheme are summarized as follows:

1. Simple update procedure.

2. No Matrix Inverse required.

3. Stable numerical techniques utilized.
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Figure 4.7: MRLS performance on a Hamming windowed sinusoidal packet
burst with 5dB of SNR at the packet peak value, -16 points.
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Figure 4.8: MRLS performiance on a Hammining windowed sinusoidal packet.
burst with 5dB of SNR at the packet peak value, all test points.
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Figure 4.9: MRLS performance on a Hanin-ing windowed sinusoidal packet
burst with 5dB of SNR at the packet peak value, ±16 points.
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4. Excellent noise performance for a modem technique.

5. Handles nonstationary data gracefully.

6. Excellent resolution performance.

7. Constant iterative improvement of the covariance matrix.

8. Low memory and reasonable computational requirements allow it to be imple-
mented with good performance on a personal computer (PC), eventhough the
data set may be quite large.

The one major disadvantage, is that the present implementation requires a full

covariance matrix eigenvalue decomposition for each spectral output.
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V. RESULTS AND RECOMMENDATIONS

The scope of this thesis work did not include the physical interpretation of

data processed. The intent here, was to develop algorithms that will be effective in

providing spectral information in the surface and internal wave frequency regions of

the Hadamard transform matched filter output of the MBTE data set. This section

will discuss, in general terms, the outputs of the LMS tracker for arrivals A, B and

C of station J contained in Appendix C and Appendix D. Conventional periodogram

analysis is used to verify the presence of the surface wave component in the error

output of the LMS tracker. It would interesting to investigate the dynamics of the

surface wave spectra using the MRLS technique, however, internal wave spectral

dynamics are of more interest, so results of processing with internal waves in mind

are presented instead.

A. STATION J ARRIVAL TRACKING

The three arrivals tracked in the station J data have been defined earlier in this

thesis. Plots of all the outputs of the LMS tracking routine are contained in Appendix

C. These figures are arranged in groups of three. Results for each of the seven outputs

of the LMS arrival tracking filters are presented. This provides for an easy comparison

between figures. The predicted output tracks are overlayed on the correlograms in

Appendix D. Appendix D is basically a set of truth plots to determine the points at

which the tracking may be questionable due to a lack of signal. No such validation was

available in earlier processing. Ninety-six coefficients were used for processing of all

three arrivals with the LMS algorithm. The p parameters 0.003, 0.0015 an 0.009 were

used for arrivals A, B and C respectively. The small differences in the adaptation
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Figure 5.1: Track comparison for Arrivals A, and C of station J.

parameter maintain sinillar variances on the LINS tracks by compensating for the

differences in tihe mean of the arrival levels.

Figure 5.1 compares the LNIS tracks for the station J six hour data block pro-

cessed. The strongest continuous arrival obvious from the correlograms is arrival B.

The performance of the tracker should be best for this arrival and indeed, the cor-

relograms verify this point. In Fig 5.1 the arrival A and C tracks show some large

transitions, Arrival B shows only one smaller transition. Tihe correlograms indicate
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that this variability is a result of signals that fade out or are nonexistent. When a

peak is lost, the algorithm searches for another peak to lock on to.

Arrivals A and C have unstable sections at the track. The stable section for

arrival A begins at 21.5 hrs and carries to the end of the track. The stable section

for C is between approximately 20.25 and 22 hrs. Note, the time scale is in decimal

hours. All the plots of Appendix C show hours into the experiment from a decimal

start time thus 25 hrs is 01:00 hrs the next day in real time. Arrival B is steady

over the whole tracking period. The transition in arrival B appears on correlogram

Fig D.8. There are some complete data dropouts on this correlogram which may

have triggered the otherwise stable track to shift peaks. The transition might also be

result of the physical processes at work in the data, as it stays within the arrival field

and it is quite stable on either side of the transition.

Looking closely at the arrival B character on the correlograms, one can discern

a periodic amplitude fluctuation in the arrival. Alternate areas of small dark and

light packets can be observed to occur with a period on the order of seconds. These

amplitude swings are quite large and are hkely caused by the multipath interference

effects described earlier. It is unfortunate that the A and C arrivals were not more

stable, as a direct visual comparison might yield obvious points of general similarity

between the tracks of Fig 5.1. There is only a very short region where all three tracks

are operating on good SNR data. This occurs between 21 hrs and 22 hrs and is

not large enough to observe the trends in presentations such as Fig 5.1. However,

the scale of the correlograms does show similar track characteristic for the B and

C arrivals around 21:50 hrs. The arrival A track does not show the same dynamics

in this region but its arrival path might not be sampling the same processes as the

other two arrival paths. The tracks of Fig 5.1 and the correlograms produce much

information useful for the data interpretation but other LMS outputs also provide
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very useful information as well.

Besides arrival time, the LMS tracker has six other outputs all of which provide

information for data interpretation and performance monitoring. Gross features of

these outputs provide visual indications of the process and statistical processing of

these outputs yields much additional information. For instance, the arrival time error

output is a zero mean output and LMS processing attempts to keep this signal as

spectrally white as possible. The variance of this output can be used to compare di-

rectly with modeled variances for the arrivals. Also, periods when this signal deviates

markedly from zero mean indicate regions where the track should be validated. For

example Fig C.9 shows one such event around 23 hrs for arrival C. A check of the

correlograms around this time show that tracker has lost the track and is searching

for a new peak to lock on to. Correlograms show that it does not succeed in regaining

a valid track after this point.

The amplitude plots of Appendix C, which include predicted amplitude, mea-

sured amplitude and amplitude error for all three arrivals, show some slower trends

in the LMS filtered output, but more importantly the variance of the error signals are

quite large for all three tracks. This is another indication of the interference of the

closely spaced arrivals in the data. Arrival B has the most stable arrival time +rack

with the lowest arrival time error variance. This can be observed by comparing the

arrival time error signals in Appendix C. A similar comparison of the amplitude error

signal shows that arrival B has the largest amplitude variance of the three. Presum-

ably. if arrival B is a sequence of single fully resolved arrivals then it would have the

lowest amplitude variance as well, since the amplitude variations are more accurately

predicted by the LMS amplitude tracker.

The phase outputs from the LMS filtering process could also provide useful

information for the interpreting the data. The phase component in this data is gen-
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erated from quadrature sampling of the original time series before matched filtering.

Both components of the quadrature sampling after matched filtering are used to com-

pute amplitude and phase. The amplitude values are used in the processing described

in this thesis. The relationship of the computed phase to the phase of the physical

acoustic signal is unclear. The lack of absolute travel time information contributes to

the ambiguity as phase unwrapping without this information might not be possible.

The phase tracks output do show trackable behavior. Despite the high variance a

distinct average trend is evident in the three phase plots. Future work will attempt

to exploit the phase information for improved tracking.

The seven outputs of the LMS tracking algorithm, examples of which are in-

cl.,ed in Appendix C for all three station J arrivals, provide a rich analysis set to

which many forms of post processing can be applied to extract information useful in

the physical interpretation of the experimental data set.

B. STATION J SPECTRAL PROCESSING

The spectral processing was performed in two spectral regions. The surface

wave region and the internal wave region. This processing uses two of the outputs

from the LMS tracks described in the previous section. For spectral estimation the

predicted arrival time output of the filter is used for the internal wave region and the

arrival time error signal is used for the surface wave region. The desirable output

in this section is a spectral output that can show the dynamics of the underlying

processes. The primary objective for the surface wave region in this thesis was to

verify its presence in the LMS tracker output. This was done using conventional

periodogram techniques on the arrival time error signal. The results are summarized

in Fig 5.2 for all three arrivals and are comparable with the wave buoy results from

Fig 5.3[Ref. 11. The full 10800 data points were processed using non-overlapped 128
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point Hamming windowed peiodogram analysis. The resulting periodograms were

averaged to produce Fig 5.2.

Figure 5.2 shows that arrival B has the closest agreement with the wave buoy

data of Fig 5.3. Arrival B shows a double peak. It is possible that the broadness

of the wave buoy peak is due to the presence of a second, lower amplitude, peak.

The resolution of the arrival B processing is twice that of the wave buoy data and

the averaging is three time as long, thus it is better suited to reveal such details.

The A and C arrivals of Fig 5.2 show slightly different character than arrival B. No

attempt has been made to separate the valid track sections of arrivals A and C, thus

there is contamination from the large transitions noted earlier in the tracks. This is

likely the source of the high frequency peaks present in the A and C tracks but not

present in the cleaner arrival B track. This contamination would also explain the

higher overall levels of the A and C spectra. Note despite the contamination from the

track transitions, arrival C shows a reasonable surface wave peak. Intriguingly, the

peak is absent in the arrival A spectrum. Further analysis using the MRLS technique,

developed in Chapter IV, would aid in explaining the character of these spectra and

would produce dynamic spectral results over the entire time period. However, having

verified the presence of the surface wave component, this is left in favor of producing

the dynamic spectra in the internal wave frequency region using the MRLS spectral

estimation technique.

Figure 5.4, Fig 5.5 and Fig 5.6 show the results of the dynamic spectral process-

ing in 3-D waterfall displays. The LMS predicted arrival time tracks were low pass

filtered with an eighth order Chebychev filter. The passband had a corner freq,_,ency

of 0.02066 Hz and the track was decimated by a factor of 10 after the low pass fil-

tering. These decimated tracks, consisting of approximately 1100 data points each,

were input to the MRLS algorithm. Spectra were plotted at each 16 point update
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of the order 47 covariance matrix used in the MRLS processing. Other M 1LS pa-

rameters included a forgetting factor of 0.9 with six principle eigenvalues employed,

a sub-series extension of 96 points in both the forward and backward directions and

a Hamming window applied in the periodogram computation. The spectra were con-

verted to decibels for display in the 3-D waterfalls. Each spectr& trace shown in the

dynamic plots represents approximately 5 minutes of data. This resolution could be

increased by a factor 16. For illustration purposes the 5 minute resolution is sufficient.

Additionally, the decimation yields nine other realizations that could be averaged if

required.

The results in these figures are very interesting. There is no way to verify the

presence of internal waves in this data set because cross-reference information, as

with the wave buoy data in the surface wave frequency region, does not exist. These

results then must be utilized to verify the ability of the MRLS algorithm to identify

the presence of low frequency energy in the data set. In this respect the plots show

some exciting results. Each of the plots shows low frequency events of durations up

to 45 minutes. These events track in frequency and the dynamics are clear. The solid

arrows in Fig 5.4 point out just a few of these events.

In each plot there exist traces that show large jumps in spectral level and have

a completely different character than the other spectra. the shaded arrows in Fig 5.4

highlight these traces. The character is induced by the large track transitions noted

in the previous section. These transitions appear as steps in the decimated time

series and thus induce ringing in the spectra when encountered in the processing. The

algorithm quickly adapts to the new level and continues with useful spectral 3stimates

after the steps. The validity of spectral estimates in the vicinity of these steps must,

however, be held suspect. None the less, the algorithm allows the maximum amount

of information to be extracted from the data set despite the contamination.
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Some of the structure of the arrival A and C dynamic spectra could be explained

away by the track contamination described earlier. However, arrival B has good track

quality and the short duration events are evident in this track. This would imply some

physical significance but the source is not necessarily the effects of internal waves (i.e.

interference of a closely spaced arrival might be biasing the arrival time estimate in

some long term measurable manner). The ability of the MRLS method to identify

low frequency dynamics is evident. This is a significant result. All three arrivals

also show in the plots energy of very low frequency near DC. This is investigated by

applying a second Chebychev low pass filter with a corner frequency of 0.0018 Hz to

the arrival series already decimated by a factor of 10. These series are decimated by

a factor of 10 again yielding a time series for very low frequencies of approximately

100 points. The MRLS algorithm is applied to this series with a forgetting factor of

one but all other parameters as in the first decimation case.

Figure 5.7 indicates the results of this processing. All three arrivals show peaks

very near DC. Arrivals A and C show two peaks of higher frequency. These may

associated with the low frequency effects of the track transitions as discussed. The

lowest frequency peak is likely attributed to physical phenomena. The utility of

the MRLS technique developed has been demonstrated. It is useful to note that

this algorithm can also use complex data without modification. The data set has

phase information which could be used directly in the spectral estimation if a reliable

method of estimating the phase at the LMS filtered arrival time could be determined.

This would provide a significant improvement in the frequency resolution capability

on this data set.
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C. RECOMMENDATIONS

The following items are suggestions that arise as result of working with the

MBTE data and would assist in data interpretation if implemented.

1. Calibrate the recorded data to actual sound pressure levels received.

2. Reprocess the data to make use of more dynamic range on the A/D conversion.
The present integer values in the data do not exceed 1000 and are more often
in the range of 200 to 300. This corresponds to using approximately 12% of the
available dynamic range of a 12 bit A/D converter.

3. Perform a simple ambient noise analysis of each of the stations to determine
the ambient noise environment that the acoustic receivers are operating in.

4. Track the dynamics of the acoustic carrier frequency in the raw acoustic data
of each station to determine carrier stability. This is easily accomplished as
part of the ambient noise analysis. It would have been useful to have recorded
the actual output of the transmitter from a receiver placed close by, that is to
monitor any drifts in its performance.

5. Compare the results of conventional matched filtering with the Hadamard trans-
form matched filtering to see if better resolution on the arrival peaks can be
achieved. The better the resolution on the arrival peaks the better any tracker
will perform on the data set.

With a view to future research based on the results of this thesis work, there

are some difficulties with the separate LMS and MRLS techniques that should be

investigated. The primary difficulty is with initialization of the LMS routine and

then control of which sub-arrival that the algorithm chooses. Note, both the LMS and

MRLS techniques utilize a set of tap weight coefficients for an AR process. The MRLS

technique is a high resolution principle component technique and the LMS is a fast

efficient adaptive technique. Both of these may be combined through the tap-weight

vector to produce a single implementation which could prove to be the phase-lock

loop of peak tracking. This could be effected by selecting a peak from a peak set that

maximizes a principle component in the covariance matrix of the MRLS technique

and then adapts the tap-weights of the predictor to track the component. This

approach should produce an algorithm that is very responsive, efficient, controllable
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and optimal in that maximizes some selected criterion. Results of research into this

aspect of the signal processing could produce some impressive results.
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VI. CONCLUSIONS

A goal of this thesis work was to develop algorithms to improve the arrival time

tracking of the Hadamard matched filter output of the MBTE data. In addition,

dynamic spectral estimation of the possible nonstationary arrival tracks, in the surface

and internal wave frequency regions was desirable. These efforts have yielded the

following results:

1. Multipath interference was shown to exists in the station J arrivals processed
for the MBTE data set. These closely spaced arrivals, in most instances, are
partially resolved. Their presence is also predicted by 3-D modeling [Ref. 4].

2. The anomalous arrival fluctuation levels noted in [Ref. 1] are a result of this
multipath interference.

3. Working with the assumption that the arrival paths are fairly stable and that
close phase relationships cause high amplitude fluctuations between the arrivals,
an LMS tracking technique, independent of peak amplitude, was developed and
implemented showing superior performance over the original arrival tracking
technique for station J arrivals. This algorithm minimizes the multipath effects.

4. The presence of the surface wave component was verified by conventional spec-
tral processing of the LMS arrival track error signals for station J.

5. A high resolution MRLS spectral estimation technique, specifically developed
to process nonstationary arrival tracks for this data set, revealed low frequency
periodic energy, in the internal wave spectral region, in all three arrivals from
station J. This energy cannot be attributed to internal waves, but the algo-
rithm demonstrates the capability of estimating the dynamic spectra of these
processes.
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APPENDIX A: LMS COMPUTER CODE

The routines in this appendix implement the LMS tracking algorithm in the

MATLAB program language and its MEX file FORTRAN interface. Briefly these

routines are:

1. PROGRAM TLMSI - The interactive input for the main tracking program
TLMS.

2. PROGRAM TLMS - The main line LMS tracking code.

3. PROGRAM SFRM - A support routine for TLMS. The 2nd derivative compu-
tation for locating local maxima in the track window.

4. PROGRAM RESHAPE - A support routine for TLMS. Rearranges the number
of rows and columns of a matix into the desired dimensions.

5. PROGRAM GETFRM - A FORTRAN routine written for the MATLAB MEX
file FORTRAN interface designed to read data fron the Bernoulli Box mass
storage disk drives that contain the data.

6. PROGRAM GETFRMG - A FORTRAN routine that implements the MEX file
interface between the FORTRAN subroutine GETFRM and MATLAB.

A. PROGRAM TLMSI
% Interactive input routine for the LS tracker TLS. Inputs are self
% explanitory and amplified in the TLhS routine.

% Created by : Lt(N) EA. Chaulk 17 October 1990 (exactly 1 year after)
% Thesis (the big Quake)

diary e:\J1418d.asc; diary off;
ibeinput('Enter Start Sin number for the tracking window (1-124) =

ibu-'.put('Enter End Bin lumber for the tracking window (>iba-124) =

itp.input('Enter FF7 Interpolation length in track window (512 etc) )
ord-input('Select LRS filter order (>64 preferred) - 1);

mut-input('Select the time filter adaptation parameter au (-.001) =

nua-input('Select the amplitude filter adaptation parameter mu (-E-8) = );
tfxiinput('Select the Lock time for initialization = );
plt.0 % Input not used

% plt-input('Select the processed data output mode a
ibuf-input('Enter the number of frames to buffer -1);
fili-input('Enter the input file name for processaing =

% Form input array
xd-[ibs ibn itp ord mut mue tfx plt ibuf]';

% Start the tracker
tlms(xd,fili);
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B. PROGRAM TLMS
function tlms(xd~fii)
% This routine implements a least mean squares algorithm for arrival
% tracking of data from the Monterey Bay Tomography Experiment. The input
% array ID and the file name FILI are inputs from the input routine ThISI
% which is interact ive. This implementation allows a single
% parameter in ILD to be modified without having to go through the entire
% interactive input routine.

% Created by :Lt(l) ElI. Chaulk 17 October 1990 (exactly 1 year after)
% Thesis (the big Quake)

% Initialize variables for the algorithm
iba-xd(1); % Starting bin for track window
ibnsxd(2); % End bin for the track window ( 0 points a power of 2!!)
itp-xd(3). % FF7 interpolation length (power of 2 is 512)
ord-xd(4); % Selected filter order
mut-xd(s); % Adaptation parameter for the arrival time
a"-xd(6); % Adaptation parameter for the amplitude
tfxzd (7); % Set the average arrival time of interest
plt-xd(8); K lot implemented (to be used for debugging code)
ibul-xd(9); K lumber of frames to buffer from disk (machine memory dep.)
inato0; K Value for LIIS init of new arrival time coeff during startup
inaa.0; % Value for LNS init of new arrival amplitude coeff during startup
icin-33; % Fortran file 1/O channel number for file interface
ilon-124; % lumber of points in a data frame
tpltO0; % Degugging parameter for routine SFRK

owuO; % Initialization counter
nini-ord-1; K lumber of coeffs requiring init
n-ibn-ibs+i; K lumber of points in track window
inAmuax(size(ab(fili))el; % lumber of characters in file nane

Kinitialixe output variables. These are the output shift registers
tmp-zeroo(ord.1);
ampozeroo(ord,i);
pup-zeroo(ord,1);
ett-xeros(ord,l);
eaaszeroo(ord.1);
tupf-zera(ord,1);
ampfazaroo(ord.1);
cresszeroo(ord * );

% More initializations
wtninat; % Init first arrival time weight
wainaa; % Init first amplitude weight
yt-; % Predicted arrival init
ypa-0; % Predicted amplitude init
icntso; % Counter
itot-0; K Counter

% Main tracking loop
while itot -C 12000,

Usm xpJagetfr(ichn,fii,inam,ilen,ibuf); % lead data frames from file
if itot - 0, inama-inan; end; K Set val for read routine alter first read

% Set track window and arrange buffered data
xmwm(ibe: ibn,:);
zprxp(ibs: ibn,:);
xw-reshape(xmi ,neibuf);
xp-reshape(xp,1 ,neibuf);

K following code used during initialization
if itot < ord,
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for ini:ibuf,
itotaitot+i;
(tu.am.pmjsfr(xm,xp.n,i~itp.ibe,tplt); % Find peaks 2nd derv routine
if itot > 1,

yptiWt'etp(itot-sw:itot-1); % Predict with available weights time
ypaws'a)*Mp(itot-sw:itot-1); % Same for amplitude

end;
if itot < nini.

[et,itt1-in(abs(tm-tfx)); % Find closest peak during imit time
0ls0,

Eet,itt=in(abs(tm-ypt)); % Find closest peak after init time
end;
[ea,ita).min(abs'am-ypa)); 1 Aplitude closest peak

% Compute errors for weight update
stnts(itt)-ypt;
easam(itt)-ypa;

% Update output shift registers

amp(itot)-am(itt);

ett (itot).et;
.aa(itot)-ea;

tmpf(itt)-ypt;
aupf(itot).ypa;
crss(itot)-icnt/itot*I0O;

1Update weights and extend weights during init
if its -itt, icut-icnt+1; end;
if itot > 1,

wt-wt4(eNt*et) .etmp(itot-sw: itot-1);

wawsa+(uuaeea) .eamp(itot-sw: itot-1);
wt.(wt ; lut];
w irwa ;insa]

and;
swm~z (size (wt));
(itt Wmitt) ypt et icat/itot itot3 % Output displays for info
(its. am (itt) ypa as PE(itt) iJ

and;

% Save results in diary file
if (ord-itot) < ihuf, ibaf-ord-itot, end;
if (ord-itot) - 0,

diary on; disp([tmpf tup ett ampf sup sea pop cram]); diary off;
samm..(size(W));
ibuf-xd(9);

and;

else

% Loop used after initialization
for iml:ibaf,

itot-itot+i;
(tm,sm.pmj-sfrm(z,p~n,i,itp,ib,tplt); %Get peak locations 2nd denyv

% Predictions and find closest peaks
yptvt 'otmp(ord-sw.1 :ord);
ypasva'eamp(ord-sw+t ;ord);
[etjtt3-uin(abs(tm-ypt));
[*a, its] 'min(abs(am-yps)),

idwitt;
if itt -- its,
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%These lines allow amplitude bias if desired.
Lzdu idumj-min(abs([tm(itt)-tmpf(ord) tm(ita)-tmpf(ord)]));

% if idum so 2, id-ita; else, id-itt; end;
else

icnt-icnt*1;
end;

% Compute error for weight updates

eaaem( id) -ypa;
J-rsm(i,ord);

% Update output shift registers
tmp-[tmp(2:ord) ;tm(itt)];
amp'[amp(2:ord) ;am(itt)J ;

ette [pop(2: ord) ; et)];
eaa=Lsta(2:ord) a];
txpf'[tmpf(2:ord) yt];

ampf-[apf(2:ord) ;ypa);
craa-Ccras(2:ord) ;icuit/itoteiQO);

% LK3 tap-weight updates for both amplitude and time
wtewte(.mteet) .etmp(ord-sw+1 :ord);
wa-va+(muaeea) .eamp(ord-asv+1:ord);

[itot icnt/itotoloo tfz ypt tm(itt) at] % Screen info updates

if remitot,ord) - 0,
% Save data

diary on; diap((tmpf tmp ett smpf amp sea pop cram]); diary off;
and;

end;
end;

end;

IClean up after last data read
iendo*rd-remfitot .ord)*1;
diary on; diap([tmpf(iend:ord) tmp(iend:ord)..
ott(iend:ord) ampf(iend:ord) amp(iend:ord) eaa(iend:ord)..
pmp(iend:ord) crss(iend:ord)]); diary off;

end;

C. PROGRAM SFRM
function [tm,am,pmj-afrm(xm,rp~ln,fn. mum, it ,bt tplt)
% (TN,IJ,,PI*sFMX(N,P,L.F,IT,BT,TPLT) This function performs
% differentiation on the interpolated arrival to determine the local Maxima and
% returns the list of candidate arrival times with the corresponding amplitude.
% XN and IP are the magnitude and phase data arrays. LI is the frame length,
% F1 in the frames number in the present buffer, 11131 if the frame number for
% display in debugging, IT is the FFT interpolation length and BT is the
% base time point number for conversion to absolute time delay. TPLT is
% the debugging and plotting input. The outputs TH, AN and PH are the peak
% arrival time , arrival amplitude and arrival phase respectively.

% Created by :Lt(U 1.1. Chaulk 17 October 1990 (exactly I year after)
% Thesis (the big Quake)

% Use data frame track window for magnitude and phase data

ve-xm((fn-)ln+ :fneln);
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% Interpolats both magnitude and phase values
z-fintr(v,it);

zp-fintr(vp.it);

% Use 2nd derivative to locate peaks and throw away local minima.
v2-[0 -min(O,diff(sigu(diff(z)))) ;0 ];
tm-find(vl>0);

an-z(tm);
pm-zp(tm);

% This section of code could be used to inpienent amplitude biasing of the

% peaks
lns~llmaLX(size (am));

%jtttfind(as > 0 .75*aum(am)/mall);
Ianma(ittt);

% Debugging Code for plotting routine results

if tplt > 0,
t-((bt+((0:ln-1))) .e(1.9375/124))';
tl-((bt+(0:it-l).e(ln/it)).e(1.9375/124))';

v1lzeros(vl);

v1(ta)-ones(ta);
if tplt -1

tort-sprintf('Interpolated Arrivals with peaks Frame % g'.inum);
else

text-sprintf( 'Inxterpolated Arrivals Frane - .gl' inu);
end;
xlabel('Time Delay (sac)')
ylabel( 'Aaplitude')
title(tezt)

end;

tme(bt(tmw-).(ln/it)).0(.9373/124); % Convert to actual time delay

and;

D. PROGRAM RESHAPE
function y a reabape(x,m,n)

%Y'sRESE[PE(X,N,N) returns the N-by-N matrix whose elements
% are taken colivise frost 1. An error results I does
% not have Mel elements. This is a built in

% RATLAE function used to resize matrices

Emm,nnJ a size~z);
if mmenn -- n
orror( 'Katrix must have NON elements.'
end

* y a zeros(m,n);
Y(:) - X.

E. PROGRAM GETFRM AND GETFRMG
C
C This is a FORTRAN subroutine used to open a data file and
C read a number of points. This routine is used by the NEI file interface
C use of RATLAB and ia basically saf standard FORTRAN routine. In order

C for it to work, It must be compiled with the NEI command and

C NOX libraries supplied with PRATUD as well as an interface routine,
C in this case GERFRXG.FOR. The ouputs from from this routine are TN
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C which is the magnitude array read in from the file., YP which is the
C phase array read in from the file and an error parameter EZ. The inputs
C are the file FOBTRAN channel number IP, The file name FP, the number

C of characters in the file name, The length of a data frame L and the
C number of frames to read in 1. Parameter passing through the interface
C routiAe is tricky so please read the HEX file information in NATLAB
C for details. lote if the number of characters in the file name is
C positive the file is open, is it is negative the file is accessed
C and if It is 0 the file is closed.

C
C Created by : Lt(I) 1.1. Chaulk 17 October 1990 (exactly 1 year after)
C Thesis (the big Quake)

SUBROUTINE GETFRJ(YM, YP, EZ, IP, FP, DP, L, 1)

REALe8 YN(1), YP(1), EZ, IP, FP(1), DP, L, N

INTEGER44 NOUR,NINUTEIOS ,IUNIT
INTEGER*2 KAG,PHASE

CHRACTERe60 KEADRC
CHAP.ACTERC1S HIC,H2C
CHABACTER*80 FILIAN

IUNIT-INT(IP)

IF(IrT(DP).EQ.O)THEN

CLOSE(IUNIT)

RETURN
ENDIF

IF(IIT(DP) .GT.O)THE

DO 10,I-i,IIT(DP)
FILAJI(I:I)-CAR(IIT(FP()))

10 CONTINUE

OPEN (IUNIT .FILEmFNJA *STATUS
I 
'OLD IER999)

LEAD(IUIIT, '(A60) ' ,ERR-999)READRC
ILED(IUUIT,'(11,I3,A9,I3) ' ,EU999)HIC,OUR,32C,KIMTE
VlITE( , e)EEADRC
VRITE(e,e)R1C,NOUR,K2C.RIIUTE
VUITE(e ,o)

UDIF

VIITK(s, )Le

DO 110 -111,T(LeI)
3.EID(IUNIT.*)NAG ,PNASE

VLITE(*,e)AG ,PHASE
YNX(I)-KAO

YP(I).PHASE*3.141593E-3
110 CONTINUE

SL-a
RETURN

999 VRITE(*,e)'File I/O Error'

EZ-I

RETURN
END
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PROGRLM GEFRUJG
C This routine ws modified from the example provided in the NE! file
C interface to work with the CETFRM.FOR subroutine. See the NUTLLB

C documentat ion for details on this file.
C
C Edited by : WE) ElK. Chaulkr

C Thesis

SINCLUDE: 'FNEI.B'

INTERFACE TO SUBROUTINE GETFRM
+ (Y1IJ[vaJlueJ * YPPfvaJlue). EZZ[vs]lua].
+ IPtvalueJ. FP[valu,) ,DP[va3.ua), LL~value), NN[valuel)

INTEGER*4 YhN. YPP, EZZ, IP, FP, DP, LL, 13
END

SUBROUTINE USIRFCI
+ [c~slias:'usrlcu'J
+ (NIJS. PLSfreforence), RRES, PaES[referenceJ)

INTEGERe2 NIS, ISS

INTEGERe4 PLES(*), PRHS(s)

INTEGER*4 CRTPuT, RELLP, IMIOP, GETGLO, ALREAL, ALINT
INTEGERe2 HPCIK

REILC8 GETSCI

INTEGER*4 YN, YPP, DP, FP, IP, LL~, 11

I5TEGER*2 K, N, RD

RELLeS XL, 11

IF (I&iS ANE. 5) THEN

CALL NEIERIGETFRI requires five input arguments;)

ELSEI? (IBUS NE. 3) THEN

CALL KEXERAC 'GETFRK requires two output argumeont')

END!?

IL - GETSCA(PRAS(4)

11 - GETSCI(PLBS(S))

N - INT(IL)
I - INT(II)

XDD-1

PLBS(1 - CRTAT(K,N,O)
PLHS(2) - CRTIUT(N,N,O)

PLESM3 a CRTNAT(NDD,NDD,O)

YEN w RILP(PLBS(1)
YPP - REALP(PLIS(2)

EZZ - REL.P(PLES(3)

IP - RVALP(PRBS1)

FP - N.EALP(PRBS(2))
DP - 3.ELP(PRS(3))
LL - N.EALP(PRES(4))
IN - 3.ALP(PRES5)

CALL. GETFRN(YNN.YPP,EZZ,IP,FP,DP.LL,IN)

RETURN

END
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APPENDIX B: MRLS COMPUTER CODE

These routines are used to implement the MRLS spectral estimation technique

in the MATLAB programming language. Briefly these routines are:

1. PROGRAM MRLS - This is the main computational routine for the spectral
estimation technique.

2. PROGRAM PRED - This is a MRLS support routine for extending a time
series using a set of prediction error coefficients.

3. PROGRAM PERIOD - A routine for computing a zero padded periodgram of
a time series.

4. PROGRAM ARPER - A routine for computing the power spectrum of a set of
prediction error coefficients.

5. PROGRAM MODCM - A routine for generating the forward-backward data
arrangment for the modified covariance matrix.

A. PROGRAM MRLS
function Efy.a&marls(x,order,nv,ff.nn.nzplt ,nxt)
% [FY,A]-RLS(z.OhDER.uV.FFi3,NZ,PLT,IT) This function returns the AR
% coefficients for the the selected model ORDER in vector A using the
% HAYRIN modified covariance forward-backward method. A includes a constant
I coefficient 1 in the first position. Vector T returns the spectral
% estimate computed using the A vector for the normalized frequency
% points in vector F. I is the data array and ORDER is the selected order of
% the correlation matrix. IV is a row vector entry with the number of the
% eigenvalues to be used in the coefficient calculation. FF is the forgetting
% factor which mast be between 0 and 1. "i is a factor that will allow this
% algorithm to work exactly like the HFBLP technique. Unless its use is
% understood from inspecting the routine always, set this value to 0.
% ZZ is the number of spectral points to be computed from the A vector.
% This value is used to zero pad the output spectrum.
% PLT defines at what interval plots of the process are desired. For example
% setting this value to 1 will plot a spectrum alter each update. Setting it to
% negative value will output the tap-weight spectra at the desired interval.
% SIT tell the prediction routine how many point to extend the series forward
% and backward.

% Created by : Lt() E.g. Chaulk 17 October 1990 (exactly I year after)
% Thesis Program (the big Quake)

k-max(size(x)); % Number of points in the data array
nvv-ax(size(uv)); % lumber eigenvalues to use in th processing
nn= n*1 ;

% The mean can be recursively removed by these statements and others in the
% main loop
%xmaenmean(x(1 :order~n));

98



%x(l :ordermnn)ax(1 :order~znn) .Ixmean;

yaemodm(x(l :orderin) ,order); % Croate the modified covariance data matrix
b-[x(orderl:rdr~uu) x(l:nn))I; % Create the desired response vector
th-ys'eb; % Compute theta
75y561*y8; % Compute the initial correlation matrix
u-zeros(th); % Zero the weight vector

% Main update loop
for i-ordar+nn:k-1,
% Recursive mean removal statements

% z(i+l)x(i+l)/xmean;

% Update the correlation and theta matrices using the recursive relations
yd-Cfliplr(x(i-order+1 :i)); x(i-order+2:i.1)];
ys-ff.eya+yd'*yd;
th-ff.ethyd'e[x(i+l) ;z(i-orderl)J;

% spectral computation
if pit > 0 & rwz(i-order-nzi+l,plt) - 0,

[u d v]-svd(ys); % Singular Value decomposition

% Create the tap-weight vectro from elgenvalues and sigenvectors
for J1I:nvv. vl(:,J)-v(:,nv(j))./d(nv(j),nv(j)); end;
for j1l:nvv. wuv(,ev(nvj)th;end;

a-fl;-,];

if nxt > 0,
z-pred(x(i-order-nn-plt+2:i+l),a~nxt); % Extend the data via linear pred
mu-max(size(z));
w-hauaing(mw)'; % Ipply a Nanning window
[f .y3period(z ew ,n~z);

diary on; disp(y'); diary off; % Save the output

% Plot the results
plot(f~y)
text-sprintf(IPoint 8 %g. max Zg'.i+l~max(ys));
title~teit)
Ylabel( 'Magnitude (dB)')
xlabel('Percentage of Sampling Frequency (Ix)')
wzeros(th);

%Compute the tap-weight spectrum instead of the IlLS spectrum

plot(f.y.'-.')
textosprintf('Point I %g',i~l);
title(tezt)
ylabel('Nagnitude (dB)')
xlabel('Prceatago of Sampling Frequency (lx)')
w-zeros(th);

end;

% Save results if desired
% diary on
% disp(a)
% diary off
% not& plotspi

end;
end;

B. PROGRAM PRED
f u n c t i o n M' r e d ( x ,an ) 
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%. Y-PLOE(A,1,U) This function is uued to extend the data length of a sequence
7. 1, based on the coefficients contained in the vector A. N samples
%. are prepended to the data and I samples are appended to the data. This
%. routine is designed to work with the prediction error coefficients produced
%. from a variety of program . The first coefficient must be a con..tant value.

%. Created by :Lt(U) EA. Chaulk 20 November 1989
%. Thesis

msmax(size(z));
l-max(size(a));
a--a(2:l);
af-flipud(a);
1-1-1;

y-Ezeroa(l,n) x zeros(l,n)J;

for i-0:n-1.
7. [i n-i n-i+1 n-i+l i+1~ n+i-l+1 m+iJ %. Index check for debug

end;

end;

C. PROGRAM PERIOD
function [f,yJ - period(x~z)
7. [F,Y]PERIOD(X,Z) This function computes the periodogram of fft width
7. Z of the data sequence 1. The normalized frequencies are returned in
7. F with the power spectral estimate in vector y,in dBls. Vindows must be
7. applied separately.

7. Created by :Lt(U) 1.1. Chaulk 5 November 1989
7. Thesis

sm2.0;
if z < 0, sml.0; end;
z-abs(z);

-2 -(+i(-.0000014(og(maz(size(z)))/log(2))));

y-fft(X);
y-y(1 :z12);
y-(smln) .eabs(y);
7.yy/UaX(y);
ysmAzx(y, .00000001);
y-20.0.0eloOy);

end;

D. PROGRAM ARPER
function [f,y) - arper(a,z)
7. [F,YI-APER(AZ) This function computes the Power Spectral Density in dE's
7. from the vector A of prediction error coefficients supplied.
7. The value of Z indicates the frequency resolution and is used
7. to zero pad the output. The normalized frequency values are returned
7. in F.

%. Created by :L%(1) EKg. Chaulk 20 November 1989
7. Thesis
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tm2(0: (-)./).00123';m~iz~))/o(2)

ymmax(Y,.000OOOO1);

YaiO.0.eloglO(y);

yby(j :z/2);

end;

* E. PROGRAM MODCM
funct ion Y-modcn(x ,ip)
% T-HODCK(X<IP) This program simply builds a matrix in the modified covariance

* % data arrangement from a ruo data vector input. X is the data array anzd IP
% in the order.

% Created by :Lt(I) Elg. Chaulk 20 November 1989
% Thesis

Umax(SiZOWx);

npnu-ip;
ywzeros(2*np,ip);

'for i-l:np,
k-i :ip;

y(i~k)ux(i+ip-k);

end p~)x~~)

end
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APPENDIX C: LMS TRACKER OUTPUT

This appendix contains the detailed output of the LMS tracking algorithm for

arrivals A, B and C of station J for the 14 Dec 1988. The figures are arranged in

consecutive groups of three for comparison of each of the tracked values for the three

arrivals. The seven outputs are:

1. The LMS filter arrival time predicted track.

2. The measured location of the closest arrival time peak to the predicted value.

3. The difference between the predicted and measured arrival times, termed the
arrival time error track.

4. The LMS predicted amplitude at the arrival time peaks.

5. The measured amplitude at the arrival time peak closest to the LMS predicted
arrival time track.

6. The measured phase at the arrival time peak closest to the LMS predicted
arrival time track.
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Figure C.2: Arrival B LMS predicted time track.
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Figure C.5: Arrival B3 closest peak to LMS predicted arrival time.
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Figure C.11: Arrival B LMS predicted amplitude track.
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Figure C.12: Arrival C LMIS predicted amiplitude track.
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Figure C.13: Arrival A peak amplitude value at closest peak to LMS
predicted arrival time.
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Figure (-3.14: Arrival B3 peak amplitude value at closest peak to LMVS
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Figure C.17: Arrival B amplitude error between amplitude prediction and

measurement at closest peak.
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Figure C.19: Arrival A Phase values at closest peak to LMS predicted
arrival time.
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Figure C.20: Arrival B Phase values at closest peak to LMS predicted
arrival time.
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APPENDIX D: MATCHED FILTER
CORRELOGRAMS

These are the 16 correlograms that constitute the matched filter output for

Station J, 14 Dec 88. Included are LMS and low pass filtered track overlays for

the A, B and C arrivals. These plots validate the arrival tracks. Note, the original

resolution of the matched filter output would have only produced 124 pixels for the

greyscale. To get the full resolution of the page each sequence period, or trace, was

FFT interpolated from 124 points to 512 points. This stretches the plots in the

X-direction and allows a clear picture of the underlying dynamics.

Note, the last 9 to 10 minutes of Fig D.16 show a non-zero output for each track

since the algorithm works with the peaks of data no matter how small they are.
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Figure D.2: Correlograiri #2
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Figure D.3: Cori-elograin #3
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Figure DA4: Correlogram #4
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Figure D.5: Correlograrn #5
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Figure D.7: Correlogram #7
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Figure D.8: Correlo'rrarn #8
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Figure D.9: Correlogram #9
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Figure D.10: Correlogram #10
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Figure D.11: Corielograrn #11
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Figure D.14: Correlogram #14
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Figure D.15: Correlograrn #15
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